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We propose a method that allows us to analytically compute the largest Lyapunov exponent of a Hamiltonian
chaotic system from the knowledge of a few unstable periodic orbitssUPOsd. In the framework of a recently
developed theory for Hamiltonian chaos, by computing the time averages of the metric tensor curvature and of
its fluctuations along analytically known UPOs, we have re-derived the analytic value of the largest Lyapunov
exponent for the Fermi-Pasta-Ulam–b sFPU-bd model. The agreement between our results and the Lyapunov
exponents obtained by means of standard numerical simulations confirms the point of view which attributes to
UPOs the special role of efficient probes of general dynamical properties, among them chaotic instability.
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I. INTRODUCTION

Unstable periodic orbits are widely studied in the field of
classical nonlinear dynamical systemsf1g, since they form
the “skeleton”f2g of the phase space of these systems and
are very sensitive to local characteristic features of the dy-
namics. There is a vast literature about UPOs and their ap-
plications, We just mention a few of them: characterization
of dynamical systemsf3g, control of classical chaos, semi-
classical quantizationf4g, statistical properties of turbulence
f5g, and characterization of complex systemsf6g. Further-
more, they are useful for a characterization of quantum chaos
and for the description of some thermodynamic properties of
dynamical systems with many degrees of freedomf7g.

In the present paper, we lend further credit to the common
wisdom of the relevance of UPOs for the study of chaotic
dynamics. Furthermore, a remarkable outcome of our present
work is that a very few UPOs are sufficient to achieve the
final result, thus confirming similar and somewhat surprising
outcomes reported in recent literaturef5,8g, where it is
shown that just one UPO is enough to derive relevant statis-
tical properties of chaotic and turbulent systems. The method
that we propose to link in a new way UPOs and chaos is
based on a combination of an already existing Riemannian
geometric theory of Hamiltonian chaos with the analytic
knowledge of some UPOs, and leads to the analytic compu-
tation of the largest Lyapunov exponents of Hamiltonian sys-
tems.

It is well known that the degree of chaoticity of a dynami-
cal system is measured by the largest Lyapunov exponentl1
which provides a measure of the dynamical instability in

terms of the local growth rate of the distance of nearby tra-
jectories, averaged along a sufficiently long reference trajec-
tory. The largest Lyapunov exponentl1 for standard Hamil-
tonian systems, described by Hamiltonian functions of the
form H=oi=1

N 1
2pi

2+Vsq1, . . . ,qNd, is computed by numerically
integrating the tangent dynamics equation

d2ji

dt2
+ S ]2V

]qi]qjD
qstd

j j = 0, s1d

along a reference trajectory qstd=(q1std , . . . ,qNstd),
and then l1= limt→`s1/2tdloghoi=1

N fj̇i
2std+ji

2stdg /oi=1
N fj̇i

2s0d
+ji

2s0dgj. In the conventional theory of chaos, dynamical in-
stability is caused by homoclinic intersections of perturbed
separatrices, but this theory seems in adequate to treat chaos
in Hamiltonian systems with many degrees of freedom. In
this case, direct numerical simulation is the only way to com-
putel1.

Recently, it has been proposed by Pettinif9g to tackle
Hamiltonian chaos in a different theoretical framework with
respect to that of homoclinic intersections. This new method
resorts to a well known formulation of Hamiltonian dynam-
ics in the language of Riemannian differential geometry: the
mechanical trajectories of a dynamical system can be viewed
as geodesics of a Riemannian manifold endowed with a suit-
able metric. In this framework, it is possible to relate the
instability of a geodesics flow with the curvature properties
of the underlying “mechanical” manifold through two geo-
metric quantities: the Ricci curvature and its fluctuations.
These two geometric quantities, in principle averaged along
a generic geodesic, enter a formula, derived by Pettiniet al.
in Ref. f10g, which allows the analytic computation of the
largest Lyapunov exponent for a generic Hamiltonian sys-
tem. However, since the mentioned time averages are in gen-
eral not analytically knowable, one has to replace them with
microcanonical averages which coincide with time averages
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when the number of degrees of freedom is large and the
dynamics is chaotic. In fact, under these circumstances, the
measure of regular orbits in phase space—at physically
meaningful energies—is vanishingly small, thus the dynam-
ics is bona fideergodic and mixing.

Therefore, the analytic computation of the largest
Lyapunov exponent can be done whenever the simplifying
hypotheses of Ref.f10g are justified and the microcanonical
averages of the mentioned geometric quantities are analyti-
cally computable. This is just the case of the FPU-b model
which has been considered in Ref.f10g. Nevertheless, when-
ever exact dynamical solutions are known, an alternative
method is possible: to compute the averages of the required
geometric quantities as time averages along these trajecto-
ries.

The purpose of the present work is to show that, when-
ever thetime averagesof the Ricci curvature and of its fluc-
tuations are analytically computable along some unstable pe-
riodic orbits, the above-mentioned replacement of time
averages with microcanonical ones can be avoided, and a
reasonable analytic estimate of the values ofl1 can be ob-
tained. It is somewhat surprising, and undoubtedly very in-
teresting, that unstable periodic orbits make something like
an “importance sampling” of the relevant geometric features
of configuration space which are needed to estimate the av-
erage degree of chaoticity of the dynamics, measured byl1.
A similar problem was already addressed inf13g, where the
authors gave an analytical estimate of the largest Lyapunov
exponent at high energy density for the Fermi-Pasta-Ulam-b
model by computing the average of the modulational insta-
bility growth rates associated to unstable modes.

In Sec. II, we briefly summarize the geometrical theory
for Hamiltonian chaos of Ref.f9g. In Sec. III, we derive the
explicit form of some unstable periodic orbits, we work out
the time averages of the Ricci curvature and of its fluctua-
tions along these analytically known trajectories, and we
compute the largest Lyapunov exponents. Finally, in Sec. IV,
we give some concluding remarks.

II. GEOMETRY AND DYNAMICS

Let us summarize the geometrization of Newtonian dy-
namics tackled inf9g. It applies to standard autonomous sys-
tems described by the Lagrangian functionsall the indices
run from 1 toN degrees of freedomd

Lsq,q̇d =
1

2o
ik

aiksqdq̇iq̇k − Vsqd, s2d

whereaik is the kinetic energy tensor andVsqd is the poten-
tial. From

2W= o
ik

aikq̇
iq̇k = 2sE − Vd, s3d

whereE is the total energy andW the kinetic energy, and
from Maupertuis’ least action principle,

dE 2Wdt= dE Î2fE − Vsqdgaikq̇
iq̇kdt = 0,

the natural motions can be seen as geodesicssdeds=0d of
the configuration space endowed with the Jacobi metric
whose line element is

ds2 = 2fE − Vsqdgaikdqidqk. s4d

This is a well known way of rephrasing Newtonian dynamics
in the Riemannian geometric language. Another geometriza-
tion of Newtonian dynamics is obtained by following the
method due to Eisenhartf14g, where the differentiable
N-dimensional configuration spaceM, on which the La-
grangian coordinatessq1, . . . ,qNd can be used as local coor-
dinates, is enlarged. The ambient space thus introduced em-
bodies the time coordinate and is given asM3R2, with
local coordinatessq0,q1, . . . ,qN,qN+1d, where sq1, . . . ,qNd
PM, q0PR is the time coordinate, andqN+1PR is a coor-
dinate closely related to Hamilton action. With Eisenhart we
define a pseudo-Riemannian nondegenerate metricgE on
M3R2 as

dsE
2 = o

mn

gmndqm
^ dqn

= dq0
^ dqN+1 + dqN+1

^ dq0

+ o
i j

aijdqi
^ dqj − 2Vsqddq0

^ dq0. s5d

Natural motions are now given by the canonical projectionp
of the geodesics ofsM3R2,gEd on the configuration space-
time: p :M3R2→M3R. However, among all the geode-
sics ofgE, the natural motions belong to the subset of those
geodesics along which the arclength is positive definite,

ds2 = o
mn

gmndqmdqn = 2C2dt2 . 0, s6d

where C is a real arbitrary constant. More details can be
found in f9g.

The stability of a geodesic flow is studied by means of the
Jacobi-Levi-Civita sJLCd equation for geodesic spread. In
local coordinates and in terms of proper times, the JLC
equation reads

¹2Jk

ds2 + o
i jr

Rk
ijr

dqi

ds
Jj dqr

ds
= 0, s7d

where J is the Jacobi vector field of geodesic separation,
where the covariant derivative is given by¹Jk/ds=dJk/ds
+oi jGi j

kdqi /dsJj, and Rijr
k are the components of the

Riemann-Christoffel curvature tensor which, in terms of the
Christoffel coefficientsGri

k , are

Rk
ijr = ] jGri

k − ]rG ji
k + o

t

Gri
t G jt

k − G ji
t Grt

k , s8d

where] j =] /]qj. The Christoffel coefficients, in turn, are de-
fined as
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G jk
i =

1

2o
m

gims] jgkm+ ]kgmj − ]mgjkd. s9d

In f9g, it has been shown that the Jacobi equations7d, written
for the Eisenhart metric of the enlarged configuration space,
nicely yields the standard tangent dynamics equations1d. In
Refs. f11,12g, the direct numerical computation of the solu-
tions of Eq.s7d, worked out for both Jacobi and Eisenhart
metrics, shows that the quantitative information on chaos,
given by the largest Lyapunov exponent, is encoded in the
geometry underlying dynamics.

Under suitable simplifying hypotheses, mainly of geomet-
ric type, in Ref.f10g it has been shown that Eq.s7d can be
replaced by a scalar effective equation

d2c

ds2 + kkRlsc +
1

ÎN − 1
kd2KRls

1/2hssdc = 0, s10d

wherec stands for any of the componentsJi of the Jacobi
field, since in this effective picture all of them obey the same
equation. Moreover,KR=oi jkgijRk

ikj is the Ricci curvature
andkR=KR/ sN−1d, which, for the Eisenhart metric, takes the
simple form

kRsqd =
DV

sN − 1d
.

1

N
o
i=1

N
]2Vsqd

]qi
2 . s11d

In Eq. s10d, hssd is a Gaussian white noise with zero mean
and unit variance, andk·ls stands for time averaging along a
reference geodesic. Time averageskkRls andkd2KRls of Ricci
curvature and of its second moment, respectively, cannot be
known analytically for a chaotic orbit, hence the need for an
assumption of ergodicity allowing the replacement of time
averages by microcanonical averages on a constant energy
surfaceSE, corresponding to the energy valueE of interest.
At variance with time averages along chaotic orbits, micro-
canonical averages can be computed analytically for some
models. It is worth remarking that, after the replacement of
time averages by means of static microcanonical averages
kkRlmE

and kd2KRlmE
, the scalar equations10d is independent

of the numerical knowledge of the dynamics.
Then the largest Lyapunov exponent for the effective

model given by Eq.s10d, defined as

l1 = lim
t→`

1

2t
log

c2std + ċ2std

c2s0d + ċ2s0d
, s12d

is obtained by solving this stochastic differential equation by
means of a standard method due to van Kampenf10g. The
final analytic expression forl1 reads

l1sV0,sV,td =
1

2
SL −

4V0

3L
D , s13d

whereV0=kkRlmE
, sV

2 =Nkd2kRlmE
,

L = F2sV
2 t +ÎS4V0

3
D3

+ s2sV
2 td2G1/3

, s14d

and

2t =
pÎV0

2ÎV0sV0 + sVd + psV

. s15d

III. ANALYTIC COMPUTATION OF LYAPUNOV
EXPONENTS

In the following, we work out time averages of the Ricci
curvature and of its fluctuations along some analytically
known unstable periodic orbits of the system described by
the Hamiltonian

Hsp,qd = o
i=1

N
1

2
pi

2 + o
i=1

N F1

2
sqi+1 − qid2 +

b

4
sqi+1 − qid4G ,

s16d

with periodic boundary conditionsqN+1;q1. This system has
been introduced by Fermi, Pasta, and Ulam in their cel-
ebrated workf15g on the equipartition properties of the dy-
namics of many nonlinearly coupled oscillators. Since then,
a huge number of papers have been devoted to the study of
the link between microscopic dynamical properties and mac-
roscopic thermodynamic and statistical properties of classi-
cal many-body systems.

The linear terms in Hamiltonians16d can be diagonalized
by introducing suitable harmonic normal coordinates. The
latter are obtained by means of a canonical linear transfor-
mation f16g. Denoting the normal coordinates and momenta
by Qk andPk for k=0, . . . ,N−1, the transformation is given
by

Qkstd = o
n=1

N

Sknqkstd, Pkstd = o
n=1

N

Sknpkstd, s17d

wherek=0, . . . ,N−1, andSkn is the orthogonal matrixf16g
whose elements are

Skn =
1

ÎN
FsinS2pkn

N
D + cosS2pkn

N
DG , s18d

n=1, . . . ,N andk=0, . . . ,N−1. The full Hamiltonians16d in
the new coordinates reads

HsQ,Pd =
1

2
P0

2 +
1

2o
i=1

N−1

sPi
2 + vi

2Qi
2d + H1sQd, s19d

where the anharmonic term is

H1sQd =
b

8N
o

i,j ,k,l=1

N−1

viv jvkvlCijklQiQjQkQl . s20d

The vk=2 sinspk/Nd, for kP h1, . . . ,N−1j, are the normal
frequencies for the harmonic casesm=0d, being vk=vN−k.
By defining

Dr = Hs− 1dm for r = mN with mP Z

0 otherwise,
J s21d

the integer-valued coupling coefficientsCijkl are explicitly
given by
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Cijkl = − Di+j+k+l + Di+j−k−l + Di−j+k−l + Di−j−k+l . s22d

By eliminating the motion of the center of massswhich cor-
responds to the zero indexd, we now easily get the equations
of motion for the remainingN−1 degrees of freedom, which,
at the second order, read

Q̈r = − vr
2Qr −

bvr

2N
o

j ,k,l=1

N−1

v jvkvlCrjklQjQkQl s23d

for r =1, . . . ,N−1.
As is shown in Ref.f16g, the equations of motions23d

admit some exact, periodic solutions that can be explicitly
expressed in closed analytical form. The simplest ones, con-
sisting of one modesOMd, have only one excited mode,
which we denote by the indexe, and thus are characterized
by Qjstd;0 for j Þe. The solitary modes are found by set-
ting Creee=0∀ r P h1, . . . ,N−1j with r Þe; it is easily veri-
fied that this condition is satisfied for

e=
N

4
;
N

3
;
N

2
;
2N

3
;
3N

4
. s24d

Thus, for solutions with initial conditionsQj =0 andQ̇j =0
for j Þe, the whole systems23d reduces to a one degree of
freedomsand thus integrabled system described by the equa-
tion of motion

Q̈e = − ve
2Qe −

bve
4Ceeee

2N
Qe

3, s25d

whereCeeee=4,4,3,3,2 fore=N/4, 3N/4, N/3, 2N/3, and
N/2, respectively. The harmonic frequencies of the modes
s24d are ve=Î2, Î2, Î3, Î3, and 2 fore=N/4, 3N/4, N/3,
2N/3, andN/2, respectively. In order to simplify the nota-

tion, in the following, let us setĈe=Ceeee.
The general solution of Eq.s25d is a Jacobi elliptic cosine,

Qestd = Acn„Vest − t0d,k…, s26d

where the free parameterssmodald amplitude A and time
origin t0 are fixed by the initial conditions. The frequencyVe
and the modulusk of Jacobi elliptic cosine functionf17g
depend onA as follows:

Ve = ve
Î1 + deA

2, k =Î deA
2

2s1 + deA
2d

, s27d

with de=bve
2Ĉe/ s2Nd. This kind of solution is periodic, and

its oscillation periodTe depends on the amplitudeA, since it
is given in terms of the complete elliptic integral of the first
kind K skd and in terms ofVe by

Te =
4K skd

Ve
. s28d

The modal amplitudeA is one-to-one related to the energy
densitye=E/N. In fact, computing the total energys19d on
the OM solutionQjstd;d jeQestd, one finds

eN =
1

2
sPe

2 + ve
2Qe

2d +
b

8N
ve

4ĈeQe
4. s29d

Since att= t0 the coordinates result(Qest0d ,Pest0d)=sA,0d,
by solving the previous equation forA we get

A =F2NSÎ1 + 2beĈe − 1

bve
2Ĉe

DG1/2

. s30d

This relation allows us to express all the parameters of the
solutions26d in terms of the more physically relevant param-
etere. The periodTe is

Te =
4K skd

ves1 + 2beĈed1/4
, s31d

wherek=ksed can be found from Eqs.s27d and s30d.
In terms of the standard coordinates, the OM solutions

result,

qnstd =
1

ÎN
QestdFsinS2pne

N
D + cosS2pne

N
DG , s32d

wheree is one of the values listed in Eq.s24d.
The Ricci curvature along a periodic trajectory, obtained

by substituting Eq.s32d into Eq. s11d, is

kRstd = 2 +
6b

N
ve

2Qe
2std, s33d

and we can compute its time averagek̄R as

k̄R = 2 +
6b

N
ve

2Q2
e. s34d

After simple algebra, using standard properties of the elliptic
functions, we find

Q2
e =

1

Te
E

t0

Te+t0

dtQe
2 =

A2

Kk2fE + sk2 − 1dK g. s35d

The time-averaged Ricci curvature results

k̄R = 2 +
12

Kk2Ĉe

fÎ1 + 2beĈe − 1gfE + sk2 − 1dK g, s36d

whereK andE are the complete elliptic integrals of the first
and second kind, respectively, both depending on the modu-
lus k which, from Eqs.s27d and s30d, is determined by the
energy densitye,

k2 =
1

2S1 −
1

Î1 + 2beĈe

D . s37d

Now, using Eqs.s36d ands37d, and the tabulated values forE
andK , k̄R is given as a function of the energy densitye. In

Fig. 1, a comparison is made betweenk̄R versuse, worked
out for the OM solutions under consideration, andkkRlmE
versuse, the average Ricci curvature analytically computed
in Ref. f10g.

By definition, the average of the curvature fluctuations is
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kd2KRlm = ŠsKR − kKRlmd2
‹m = sN − 1d2fkskRd2lm − skkRlmd2g.

s38d

Again, by replacing the microcanonical averages with time
averages, from Eq.s34d and after some trivial algebra, we get

d2kR =
36b2ve

4

N2 fQ4
e − Q2

eQ
2
eg. s39d

The new term

Qe
4 =

A4

Te
E

0

Te

dt cn4sVet,kd =
A4

4K
E

0

4K

du cn4su,kd

can be computed by resorting to standard properties of the
elliptic functions, and the result is

Qe
4 =

A4

3Kk4fK s2 − 5k2 + 3k4d + 2Es2k2 − 1dg. s40d

Finally, Eqs.s40d and s35d in Eq. s39d yield

d2kR =

192Fsk2 − 1d + 2s2 − k2d
E

K
− 3SE

K
D2G

s1 − 2k2d2Ĉe
2

. s41d

From Eq.s37d and making use of the tabulated values forE
andK , Eq. s41d provides the mean fluctuations of curvature
as a function ofe.

In Fig. 2, a comparison is made between the time average
of the Ricci curvature fluctuationsd2kR as a function of the
energy densitye, worked out along the OM solution that we

FIG. 1. k̄R vs e, worked out by means of the three single-mode
solutions identified by the values ofe listed in Eq. s24d sdotted,
dashed, and long-dashed lines refer toe=N/4 ,3N/4,
e=N/3 ,2N/3, ande=N/2, respectivelyd, is compared withkkRlmE
computed inf10g scontinuous lined. The agreement is very good on
a broad range of values of energy densitye.

FIG. 2. In this figure, we report three curves ford2kR vs
e computed by integrating the curvature fluctuations along the
three single-mode solutions considered in the present paper
sdotted, dashed, and long-dashed lines refer toe=N/4 ,3N/4,
e=N/3 ,2N/3, ande=N/2, respectivelyd, and a comparison is made
with the same quantity computed inf10g scontinuous lined. Also in
this case the agreement is very good.

FIG. 3. This figure shows the largest Lyapunov exponentl1

obtained by integrating the suitable geometric quantity along the
three single-mode solutions considered in the present paper, plotted
vs e. Dotted, dashed, and long-dashed lines refer toe=N/4 ,3N/4,
e=N/3 ,2N/3, ande=N/2, respectively. Continuous line refers to
the Lyapunov exponent computed inf10g. The full circles are the
values forl1 computed by numerical integration. The agreement is
again very good on a broad range ofe values.
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considered, andkd2kRlmE
versuse analytically computed in

Ref. f10g. The agreement is very good, thus confirming from
a completely new point of view that unstable periodic orbits
are special tools for dynamical systems analysis; in this case,
certain geometric quantities of configuration space are sur-
prisingly well sampled by UPOs because time averages com-
puted along them are very close to microcanonical averages
performed on the whole energy hypersurfaces.

Finally, we can compute the Lyapunov exponents as a
function of the energy densitye by inserting Eqs.s36d, s37d,
and s41d into the analytic formulass13d and s14d, replacing
kkRlmE

and kd2kRlmE
by means of the corresponding time av-

erages computed above. Figure 3 shows that the overall
agreement between our analytic results, the analytic results
from f10g, and the results obtained by numerical integration
of the tangent dynamics, is very good. The agreement is
globally very good because at high energy density our results
are really very close to the other mentioned ones, and at low
energy density the discrepancy does not exceed—at
worst—a factor of 2 on a range of many decades of energy
density and with the use of onlyoneunstable periodic orbit.

IV. CONCLUDING REMARKS

In conclusion, tackling the FPU-b model, we have found
that some global curvature properties of the configuration
space manifold—whose geodesics coincide with the trajec-
tories of the system—are efficiently sampled by unstable pe-
riodic orbits. This is shown in Figs. 1 and 2 where the ana-

lytic energy dependence of the microcanonical averages of
Ricci curvature and of its fluctuations is compared to the
same quantities obtained by time-averaging along three un-
stable periodic orbits. Then, since the averages of these geo-
metric quantities enter an analytic formula to compute the
largest Lyapunov exponents, unstable periodic orbits can be
used to compute them. The results obtained in this work are
in very good agreement with those reported in Ref.f10g.
Even though we have performed our computations only for
one specific modelsFPU-bd, we surmise that this method
can be of general validity. In fact, the computations given in
the present work remove an ergodic assumption made in the
Riemannian theory of Hamiltonian chaos, where it is as-
sumed that the time averages of the relevant geometric quan-
tities, to be computed along chaotic orbits, can be replaced
by static microcanonical averages. While chaotic trajectories
cannot be known analytically, UPOs can, and efficiently do
the same job.

Finally, let us remark that this impressive efficiency of
UPOs in “smartly” sampling of the phase space of Hamil-
tonian systems, while confirming the special relevance of
UPOs among all the possible phase-space trajectories of a
nonlinear Hamiltonian system, opens an interesting subject
for future investigation: understanding the deep reasons for
their peculiarity.
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