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Lyapunov exponents from unstable periodic orbits
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We propose a method that allows us to analytically compute the largest Lyapunov exponent of a Hamiltonian
chaotic system from the knowledge of a few unstable periodic ofbiE09. In the framework of a recently
developed theory for Hamiltonian chaos, by computing the time averages of the metric tensor curvature and of
its fluctuations along analytically known UPOs, we have re-derived the analytic value of the largest Lyapunov
exponent for the Fermi-Pasta-UlagFPU-8) model. The agreement between our results and the Lyapunov
exponents obtained by means of standard numerical simulations confirms the point of view which attributes to
UPOs the special role of efficient probes of general dynamical properties, among them chaotic instability.
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[. INTRODUCTION terms of the local growth rate of the distance of nearby tra-
jectories, averaged along a sufficiently long reference trajec-
Unstable periOdiC orbits are W|de|y studied in the field of tory_ The |argest Lyapunov exponemi for Standard Ham“_
classical nonlinear dynamical systeifid, since they form  tonjan systems, described by Hamiltonian functions of the
the “skeleton”[2] of the phase space of these systems angy m H=E-'\11%p-2+V(q1, ...,0v), is computed by numerically
are very sensitive to local characteristic features of the dyl'ntegratinglj_theItangent dynamics equation
namics. There is a vast literature about UPOs and their ap-
plications, We just mention a few of them: characterization d?¢ PV |
of dynamical system§3], control of classical chaos, semi- ae aq o/ o o (1)
classical quantizatiofd], statistical properties of turbulence a
[5], and characterization of complex systef@d. Further- along a reference trajectory q(t)=(gs(t), ... ,qn(t),
more, they are useful for a characterization of quantum chaogng then >\1=|impm(1/2t)|09{2i'\l1[-§i2(t) +§i2(t)]/EiN:l['§i2(o)
and for_ the descriptior_w of some thermodynamic properties of. §i2(0)]}. In the conventional theory of chaos, dynamical in-
dynamical systems with many degrees of fr_eec[aﬁn stability is caused by homoclinic intersections of perturbed
_In the present paper, we lend further credit to the commoRg o atrices, but this theory seems in adequate to treat chaos
wisdom of the relevance of UPOs for the study of chaotici, ‘yamiltonian systems with many degrees of freedom. In
dy”am'cs- Furthermore, a remarkable o_u@come of our preseflis case, direct numerical simulation is the only way to com-
work is that a very few UPOs are sufficient to achieve the, ute ;.
final result, thus confirming similar and somewhat surprisin Recently, it has been proposed by Petfie] to tackle

outcomes reported in recent literatu8,8], where it is i miitonian chaos in a different theoretical framework with
shown that just one UPO is enough to derive relevant statisaqpact 1 that of homoclinic intersections. This new method
tical properties of chaotic and turbulent systems. The methoghsq s 1o 4 well known formulation of Hamiltonian dynam-
that we propose to link in a new way UPOs and chaos i§.q i the language of Riemannian differential geometry: the
based on a combination of an already existing Riemanniag, e cpanical trajectories of a dynamical system can be viewed

geometric theoty of Hamiltonian chaos with the .analyticas geodesics of a Riemannian manifold endowed with a suit-
knowledge of some UPOs, and leads to the analytic COMpUspe metric. In this framework, it is possible to relate the

tation of the largest Lyapunov exponents of Hamiltonian sys;nsiapility of a geodesics flow with the curvature properties
tems. - . of the underlying “mechanical” manifold through two geo-
Itis well I_<nown that the degree of chaoticity of a dynami- metric quantities: the Ricci curvature and its fluctuations.
callsystem IS measured by the largest LyaP“”OY eprr_pnfc These two geometric quantities, in principle averaged along
which provides a measure of the dynamical instability ing generic geodesic, enter a formula, derived by Pestirl.
in Ref. [10], which allows the analytic computation of the
largest Lyapunov exponent for a generic Hamiltonian sys-
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when the number of degrees of freedom is large and the |

dynamics is chaotic. In fact, under these circumstances, the 5f 2Wdt= 5f V2[E - V(g)Jayg'gfdt=0,
measure of regular orbits in phase space—at physically

meaningful energies—is vanishingly small, thus the dynaminhe natural motions can be seen as geoddgifsis=0) of

ics isbona fideergodic and mixing. the configuration space endowed with the Jacobi metric
Therefore, the analytic computation of the largestyhose line element is

Lyapunov exponent can be done whenever the simplifying
hypotheses of Refl10] are justified and the microcanonical ds’ = 2[E - V(q)]a,dqdd. (4)
averages of the mentioned geometric quantities are analyti-
cally computable. This is just the case of the FBWaodel  This is a well known way of rephrasing Newtonian dynamics
which has been considered in RE0]. Nevertheless, when- in the Riemannian geometric language. Another geometriza-
ever exact dynamical solutions are known, an alternativéion of Newtonian dynamics is obtained by following the
method is possible: to compute the averages of the requiretiethod due to Eisenhaitl4], where the differentiable
geometric quantities as time averages along these trajectdl-dimensional configuration spac#t, on which the La-
ries. grangian coordinategy®, ... ,gV) can be used as local coor-
The purpose of the present work is to show that, whendinates, is enlarged. The ambient space thus introduced em-
ever thetime average®f the Ricci curvature and of its fluc- bodies the time coordinate and is given & X R?, with
tuations are analytically computable along some unstable pdecal coordinates(q®,q?, ... ,gN,qV*?), where (¢, ...,V
riodic orbits, the above-mentioned replacement of timee M, °< R is the time coordinate, angM** € R is a coor-
averages with microcanonical ones can be avoided, and dinate closely related to Hamilton action. With Eisenhart we
reasonable analytic estimate of the values\pican be ob- define a pseudo-Riemannian nondegenerate mggion
tained. It is somewhat surprising, and undoubtedly very in-M X R? as
teresting, that unstable periodic orbits make something like

an “importance sampling” of the relevant geometric features d£=> 9,49 ® dg”

of configuration space which are needed to estimate the av- wv

erage degree of chaoticity of the dynamics, measuren; by =d daMl+ddMl e d
A similar problem was already addressed 113], where the o @ dd e dd

authors gave an analytical estimate of the largest Lyapunov + ;,11.J.dqi ® dd - 2V(q)d®  ddP. (5)
exponent at high energy density for the Fermi-Pasta-Utam- ij

model by computing the average of the modulational insta- ) ) ) o
bility growth rates associated to unstable modes. Natural motions are now given by the canonical projection

In Sec. I, we briefly summarize the geometrical theory©f the geodesics dfM X R?,ge) on the configuration space-
for Hamiltonian chaos of Ref9]. In Sec. Ill, we derive the time: m: M X[R?— M X R. However, among all the geode-
explicit form of some unstable periodic orbits, we work out SIcS 0fge, the natural motions belong to the subset of those
the time averages of the Ricci curvature and of its fluctuag€odesics along which the arclength is positive definite,
tions along these analytically known trajectories, and we
compute the largest Lyapunov exponents. Finally, in Sec. 1V, ds’= > g,,dg“dg’ = 2C%dt* > 0, (6)
we give some concluding remarks. my

where C is a real arbitrary constant. More details can be
Il. GEOMETRY AND DYNAMICS found in[9]. _ _ ,
The stability of a geodesic flow is studied by means of the

Let us summarize the geometrization of Newtonian dy-Jacobi-Levi-Civita(JLC) equation for geodesic spread. In
namics tackled iff9]. It applies to standard autonomous sys-local coordinates and in terms of proper tirmgthe JLC
tems described by the Lagrangian functi@il the indices equation reads
run from 1 toN degrees of freedom .

V2K LS R dq'deq’ 0 @)

1 d 4 "ds ds
L(0,0) =2 a(@dd - V(a), ()

ik where J is the Jacobi vector field of geodesic separation,
where the covariant derivative is given Bd%/ds=dJ/ds
wheregy is the kinetic energy tensor andq) is the poten- +2ijF}‘jdqi/dsJ, and R}‘jr are the components of the
tial. From Riemann-Christoffel curvature tensor which, in terms of the

Christoffel coefficientd™, are

ri?

2W= g =2(E-V), 3
% Adq = 2E=-V) ® RS = gl =g T + 2 Ty ~ T, (8)
t
whereE is the total energy andlV the kinetic energy, and whereaj:&/aqj. The Christoffel coefficients, in turn, are de-
from Maupertuis’ least action principle, fined as
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R ™
K= EE 9"™(di%m* hDmj ~ Imjic) - 9 27= — 0 . (15)
m 2VQ0(Qg + 0g) + mog
In [9], it has been shown that the Jacobi equati®nwritten
for the Eisenhart metric of the enlarged configuration space, || ANALYTIC COMPUTATION OF LYAPUNOV
nicely yields the standard tangent dynamics equatlonin EXPONENTS

Refs.[11,17], the direct numerical computation of the solu-
tions of Eq.(7), worked out for both Jacobi and Eisenhart In the following, we work out time averages of the Ricci
metrics, shows that the quantitative information on chaoscurvature and of its fluctuations along some analytically
given by the largest Lyapunov exponent, is encoded in th&nown unstable periodic orbits of the system described by
geometry underlying dynamics. the Hamiltonian

Under suitable simplifying hypotheses, mainly of geomet-
ric type, in Ref.[10] it has been shown that E¢7) can be

N N
1 1
H(p,g) =X =p?+ >, E(Qi+1_Qi)2+§(qi+l_Qi)4 ,

replaced by a scalar effective equation 2" o
d? 1 (16)
Lk =PV y=0, a0 ) |
VN-1 with periodic boundary conditiong.; = q,. This system has

been introduced by Fermi, Pasta, and Ulam in their cel-

where ¢ stands for any of the componenisof the Jacobi o ;
field, since in this effective picture all of them obey the sameEPrated wor 15] on the equipartition properties of the dy-

equation. MoreoverKR:Eijkginkikj is the Ricci curvature namics of many nonlinearly coupled oscillators. Since then,

andks=Kx/(N-1), which, for the Eisenhart metric, takes the & hUge number of papers have been devoted to the study of
simple form the link between microscopic dynamical properties and mac-

roscopic thermodynamic and statistical properties of classi-
AV 1 N AV(q) cal many-body systems.
ke(q) = ~=> > (11 The linear terms in Hamiltonia(l6) can be diagonalized
(N=1)  Ni5 by introducing suitable harmonic normal coordinates. The

In Eq. (10), 7(s) is a Gaussian white noise with zero mean latter are obtained by means of a canonical linear transfor-
and unit variance, andl). stands for time averaging along a mation[16]. Denoting the normal coordinates and momenta

reference geodesic. Time averagkg, and({5°Kg)s of Ricci Ey QqandPy for k=0, ... N-1, the transformation is given
curvature and of its second moment, respectively, cannot b

known analytically for a chaotic orbit, hence the need for an N N

assumption of ergodicity allowing the replacement of time Q) =X Sea®), Pt = > Sepil®), (17
averages by microcanonical averages on a constant energy n=1 n=1

surfac_eEE, cor_respondmg to the energy val&eof m_terest_. wherek=0, ... N-1, andS,, is the orthogonal matrik16]
At variance with time averages along chaotic orbits, micro,hose elements are

canonical averages can be computed analytically for some

models. It is worth remarking that, after the replacement of 1| . (2mkn 27kn
time averages by means of static microcanonical averages Sm‘\y_ﬁ sin ey v/ I (18)
(KR) 1 and(éZKFQME, the scalar equatiofiL0) is independent o _
of the numerical knowledge of the dynamics. n=1,...N and_k:O, ...,N=1. The full Hamiltonian(16) in
Then the largest Lyapunov exponent for the effectivethe new coordinates reads
model given by Eq(10), defined as N-1
- H(Q p)=5p2+ 32 (P? + 0?Q?) +H,(Q),  (19)
1+ A T2 g e
A= |Im§ log —————, (12
i Y7 (0) + y#(0) where the anharmonic term is
is obtained by solving this stochastic differential equation by P N-1
means of a standard method due to van Kamd€nh. The H(Q) =+ > 0000, Cijl QQ QQ.- (20)
final analytic expression fax, reads 8N jki=1
1 40, The w=2 sinwk/N), for ke{1,... N-1}, are the normal
M(Qo,00,7) = 2 A= 37 ) (13) frequencies for the harmonic cagg=0), being w,= wy_.
By defining
whereQo=(kg),.., 76 =N(&kr),,_. .
(=1™ forr=mNwithme Z
20,2 13 A = 0 herwi (21
A= 20_67__'_ T + (20_%27_)2 ’ (14) otherwise,
the integer-valued coupling coefficien@;, are explicitly
and given by
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Ciji = = Aigjukat T Aigjapa A H Ao (22) 1 B a0
ij i+j+kH i+j i—j+ i—j—k+ eN = (P§+ngg)+8—ngCng. (29)

By eliminating the motion of the center of masghich cor- 2

responds to the zero indgxve now easily get the equations Since att=t, the coordinates resuliQ.(to), Ps(ty))=(A,0),
of motion for the remainingN—1 degrees of freedom, which, py solving the previous equation férwe get

at the second order, read \/7A 1/2
1+ -1
A= {2N(—2B€Ce )} .

ﬁwéée

N

-1
2N g 00w CiQQQ (23
jkl=1

. 30
Qr:_(J’)rZQr_ﬁwr 50

This relation allows us to express all the parameters of the

forr=1,... N-1. solution(26) in terms of the more physically relevant param-

As is shown in Ref[16], the equations of motiori23) etere. The periodT, is
admit some exact, periodic solutions that can be explicitly
expressed in closed analytical form. The simplest ones, con- T.= L(k) (32)
sisting of one modgOM), have only one excited mode, ¢ we(1+2BEée)1/4,
which we denote by the indes, and thus are characterized
by Q(t)=0 for j #e. The solitary modes are found by set- Wherek=k(e) can be found from Eqg¢27) and(30).

ting Creee=00r {1, ... N-1} with r #¢; it is easily veri- In terms of the standard coordinates, the OM solutions
fied that this condition is satisfied for result,
1 . [ 2mne 2mne
_N.N N 2N 3N (24) qn(t)=?Qe(t){sm<T>+c0< N )} (32
4 1 3 1 2 ) 3 ) 4 \!N

wheree is one of the values listed in ER4).

Thus, for solutions with initial condition®;=0 andQ;=0 The Ricci curvature along a periodic trajectory, obtained
for j # e, the whole systent23) reduces to a one degree of by substituting Eq(32) into Eq. (11), is

freedom(and thus integrabjesystem described by the equa-
tion of motion 6

ke(®) =2+ F0ZQ(), (33)
4
o _ 2 BweCeceq s o
Qe =~ Qe 2N e’ (25) and we can compute its time averdgeas
whereCeeeezé_l,4,3,3,2 fore:N/_4, 3N/4, N/_3, 2N/3, and FR: 2 +6_Bw§§e_ (34)
N/2, respectively. The harmonic frequencies of the modes N

(24) are we=12, \2, 3, \3, and 2 fore=N/4, 3N/4, N/3,
2N/3, andN/2, respectively. In order to simplify the nota-

tion, in the following, let us se€C.=Cgccea

After simple algebra, using standard properties of the elliptic
functions, we find

The general solution of E¢25) is a Jacobi elliptic cosine, — 1 (T A?
g 425 P Qe:_IT dthzm[E+(k2—l)K]. (35)
Qel(t) = Acn(Qe(t ~ o), K), (26) ol
) ) The time-averaged Ricci curvature results
where the free parametefsnoda) amplitude A and time
origin ty are fixed by the initial conditions. The frequenQy - _ 12 ~ .
and the modulusk of Jacobi elliptic cosine functiofil7] Kr=2+ K K2C [V1+2BeCe=1][E +(k*~ DK], (36)
e

depend oA as follows:
whereK andE are the complete elliptic integrals of the first
N ey _ SA2 and second kind, respectively, both depending on the modu-
Qe=weV1+ A%, k= 21+ 59 @7 sk which, from Egs.(27) and (30), is determined by the
energy density,

with 8,= Bw2Ce/ (2N). This kind of solution is periodic, and , 1 1
its oscillation periodTl, depends on the amplitud since it ke= —(1 - —A)
h V1 +2BeC,

2
Now, using Eqs(36) and(37), and the tabulated values f&r

4K (K) andK, kg is given as a function of the energy densétyin
= 0, (28) Fig. 1, a comparison is made betwelgnversuse, worked

out for the OM solutions under consideration, a{kﬁ)ME
The modal amplitudeA is one-to-one related to the energy versuse, the average Ricci curvature analytically computed
densitye=E/N. In fact, computing the total enerdt9 on in Ref.[10].

the OM solutionQj(t) = 6;cQe(t), one finds By definition, the average of the curvature fluctuations is

(37
is given in terms of the complete elliptic integral of the first
kind K (k) and in terms of(), by

Te
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FIG. 2. In this figure, we report three curves fofkg Vs
e computed by integrating the curvature fluctuations along the
three single-mode solutions considered in the present paper
(dotted, dashed, and long-dashed lines referetdN/4,3N/4,
e=N/3,2N/3, ande=N/2, respectively, and a comparison is made
with the same quantity computed [ih0] (continuous ling Also in
this case the agreement is very good.

FIG. 1. kg vs €, worked out by means of the three single-mode
solutions identified by the values @flisted in Eq.(24) (dotted,
dashed, and long-dashed Ilines refer te=N/4,3N/4,
e=N/3,2N/3, ande=N/2, respectively, is compared with(kg),
computed i 10] (continuous ling The agreement is very good on
a broad range of values of energy density

(6°KR), = (K= (Kr) ). = (N = DF((kp)?),, = (k) )]
(39 10!

Again, by replacing the microcanonical averages with time ,
averages, from Eq34) and after some trivial algebra, we get 10

— 36f%0) —  —— 10 £
& kg = TG[Q‘le - QZeQze]- (39 E
107 &
The new term 3
A4 (Te A4 [ 107° ¢
Qi= —f dtenf(Qet, k) = —f décr(6,k) < F
TeJo 4K ), o [
can be computed by resorting to standard properties of the :
elliptic functions, and the result is 07
Q= A [K(2 - 52+ 3k + 2E(22 - 1)].  (40) 1o
¢ 3Kk ' ;
107 F 3
Finally, Egs.(40) and(35) in Eq. (39) yield §//
5 S U R R TTON EETT RS R
192{“(2 ~D+2(2- kZ)E _ 3(5) ] 10 10° 10 10° 10 0*  10°  10*  10°
— K K €
kg = - . (41
(1- z<2)2c;2 FIG. 3. This figure shows the largest Lyapunov exponent

) obtained by integrating the suitable geometric quantity along the
From Eq.(37) and making use of the tabulated valuesBor  three single-mode solutions considered in the present paper, plotted
andK, Eq.(41) provides the mean fluctuations of curvature ys e. Dotted, dashed, and long-dashed lines refest®/4,3N/4,
as a function ofe. e=N/3,2N/3, ande=N/2, respectively. Continuous line refers to
In Fig. 2, a comparison is made between the time averagge Lyapunov exponent computed [ih0]. The full circles are the
of the Ricci curvature fluctuations’kg as a function of the values fork; computed by numerical integration. The agreement is
energy density, worked out along the OM solution that we again very good on a broad range eofalues.
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considered, and&zkmE versuse analytically computed in lytic energy dependence of the microcanonical averages of
Ref.[10]. The agreement is very good, thus confirming fromRicci curvature and of its fluctuations is compared to the
a completely new point of view that unstable periodic orbitssame quantities obtained by time-averaging along three un-
are special tools for dynamical systems analysis; in this casétable periodic orbits. Then, since the averages of these geo-
certain geometric quantities of configuration space are sumnetric quantities enter an analytic formula to compute the
prisingly well sampled by UPOs because time averages comargest Lyapunov exponents, unstable periodic orbits can be
puted along them are very close to microcanonical averagassed to compute them. The results obtained in this work are
performed on the whole energy hypersurfaces. in very good agreement with those reported in R&0].
Finally, we can compute the Lyapunov exponents as dven though we have performed our computations only for
function of the energy density by inserting Eqs(36), (37),  one specific mode{(FPU-3), we surmise that this method
and (41) into the analytic formulag13) and(14), replacing can be of general validity. In fact, the computations given in
<kR>,uE and(&sz)#E by means of the corresponding time av- the present work remove an ergodic assumption made in the
erages computed above. Figure 3 shows that the overdRiemannian theory of Hamiltonian chaos, where it is as-
agreement between our analytic results, the analytic resulgmed that the time averages of the relevant geometric quan-
from [10], and the results obtained by numerical integrationtities, to be computed along chaotic orbits, can be replaced
of the tangent dynamics, is very good. The agreement i8Yy static microcanonical averages. While chaotic trajectories
globally very good because at high energy density our resultgannot be known analytically, UPOs can, and efficiently do
are really very close to the other mentioned ones, and at lohe same job.
energy density the discrepancy does not exceed—at Finally, let us remark that this impressive efficiency of
worst—a factor of 2 on a range of many decades of energy/POs in “smartly” sampling of the phase space of Hamil-
density and with the use of onlyneunstable periodic orbit. tonian systems, while confirming the special relevance of
UPOs among all the possible phase-space trajectories of a
nonlinear Hamiltonian system, opens an interesting subject
IV. CONCLUDING REMARKS for future investigation: understanding the deep reasons for

In conclusion, tackling the FP@-model, we have found their peculiarity.

that some global curvature properties_ of the _configurat.ion ACKNOWLEDGMENT
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